

ROBOPROX Symposium 2024

Introductory expert meeting of the project ROBOPROX: Robotics and Advanced Industrial Production, reg. no. CZ.02.01.01/00/22_008/0004590

Date: 14 March 2024

Venue: Red Auditorium, Building B, CIIRC CTU, Jugoslávských partyzánů 3, Prague 6

8:00–8:30	Arrival of participants and Registration
	Introduction of the project and partners
8:30-8:35	Welcome note and opening
	prof. Ing. Vladimír Mařík, DrSc., dr. hc, Scientific Director, CIIRC CTU
8:35-8:40	doc. RNDr. Vojtěch Petráček, CSc., CTU Rector
8:40-8:55	Short speeches by representatives of the project partners
	prof. Václav Snášel, Rector, Technical University of Ostrava (VŠB-TUO)
	prof. Ing. Josef Basl, CSc., Vice-Rector for Strategy and Development, University of West
	Bohemia (UWB)
8:55–9:00	Josef Schwarz, EC Representation in the Czech Republic
9:00–9:20	Introduction of the project, its partners, objectives and structure
	prof. Dr. Ing. Zdeněk Hanzálek, Principal Investigator
9:20-9:25	WP1: Control and optimization for systems, materials, and manufacturing
	Ing. Milan Korda, Ph.D.
9:25-9:30	WP2: Robotics and Computation Methods for Production
	prof. Dr. Ing. Robert Babuška

	Presentation by research area (RA) and research objective (RO):
9:30-9:55	RA1 Control of distributed-parameter systems and complex robotic structures
	prof. Ing. Tomáš Vyhlídal, Ph.D.
	Optimal control of interconnected time-delay systems
	Extending the system decoupling method
	Control and vibration suppression of light robotic structures
	Algorithms for industrial control
	Estimation and filtering
	Advanced manufacturing

9:55-10:25	Coffee Break
10:25-10:35	RA2: Control for modular systems, structures, and materials
	prof. Ing. Michael Šebek, DrSc.
	 Methodology for collaborative assembly of modular structures
	 Methodology for control of assembled modular structures
10:35-10:45	RA3: Convex relaxations for non-convex problems in materials and industrial design
	prof. RNDr. Martin Kružík, Ph.D.
	 No relaxation gap in the moment-SOS hierarchy
	Better scalability of the moment-SOS hierarchy
10:45-11:05	RA4: Computer-aided design, simulation and manufacturing of (modular) materials,
	mechanisms, and structures
	prof. Ing. Jan Zeman, Ph.D.
	Simulations
	Optimal design
	Manufacturing and validation
11:05-11:20	RA5: Automation for nanoscale surface engineering - prof. Ing. Tomáš Polcar, Ph.D.,
	doc. Antonio Cammarata, Ph.D.
	Robotic magnetron sputtering
	Automated nanoscale tribology

	Design and manipulation of 2D materials
11:20-11:30	RA6 Advanced robot autonomy - RNDr. Miroslav Kulich, Ph.D.
	 Robot workspace modelling, robot under uncertainty
	 Perception-based navigation using embedded workspace features
	 Long-term autonomy, fault detection and recovery
11:30–11:50	RA7 Human-machine collaboration - prof. Dr. Ing. Robert Babuška
	 Modular knowledge-enabled architecture for HRC
	 Interactive skill and task specification, learning
	 Planning, scheduling and execution of tasks in the HRC workspace
	Interactive perception
	 Application to a robotic system for radiation detection
11:50-12:00	RA8 Cooperative aerial robots for advanced industrial production
	doc. Ing. Martin Saska, Dr. rer. nat.
	 Topological multi-modal mapping and cooperative localization
	 Trajectory and high-level mission planning for agile multi-robot flight

12:00–13:30 Lunch at Testbed Control Room (groundfloor)

13:30-13:40	RA9 Resilient machines through continuous learning and sensing
	 End-to-end learning with explainability
	Versatile, resilient robots through distributed reactive control and whole-body tactile
	sensing
13:40-13:50	RA10 Robotic routing in dynamic industrial environment with human presence
	doc. Ing. Tomáš Krajník, Ph.D.
	 Robotic routing solvers with solution quality estimates
	Data collection planning in spatio-temporal fields
13:50-14:15	RA11 Scheduling, discrete optimization and decision-making
	prof. Dr. Ing. Zdeněk Hanzálek
	• High-performance algorithms for the novel extensions of production scheduling problems
	Uncertainty and machine learning in discrete optimization
	Effective decision-making for long-term autonomy
	Metaheuristic methods application for large scale, high dimensional data
	Optimization of energy consumption and production
11.15_11.15	Coffee Preak

14:45–15:05	RA12 Scalable formal methods in robotics and production
	Mgr. Mikoláš Janota, Ph.D.
	Scalable symbolic execution through bounded model checking
	Automated reasoning for industrial applications
	Reasoning about configurable systems
	Graphs, parameters, and optimization for agents
15:05-15:20	RA13 Complex systems for flexible production - doc. Ing. Petr Kadera, Ph.D
	Advanced models of complex production systems
	Modularization of production systems
	Quality control in flexible manufacturing systems
	Products, production systems, and devices

15:20–15:30 Conclusion and Wrap-up - prof. Dr. Ing. Zdeněk Hanzálek

