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RO 11.1: High-performance algorithms for the novel
extension of production scheduling problems

e Investigating bi-objective scheduling problem 1o
minimize Makespan and the Total Tardiness Cost in an b1t

additive manufacturing system.

e Developing an efficient approach by combining the
NSGA-II algorithm and a self-adaptive local search.

(I) Crossover and (IIT) Combination of  (VII) Non-dominated
Mutation operators random and learning sorting
based Local search
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Mohammad Rohaninegjad, Reza Tavakkoli-Moghaddam,
Behdin Vahedi-Nouri, Zdenék Hanzdlek & Shadi Shirazian. A
hybrid  learning-based  merta-heuristic  algorithm  for
scheduling of an additive manufacturing systerm consisting
of parallel SLM machines. IJPR 2022.
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RO 11.1: High-performance algorithms for the novel
extension of production scheduling problems

e What we will aim for:

o Identifying Critical Scheduling Areas (CSA) brought by the new manufacturing paradigms
m  Exploring the characteristics, complexity, and mathematical formulation of CSAs for example
vertical and Horizonral Integration, Flexible Production Environments, Real-Time Scheduling etc.

o  Developing solution algorithms according to opportunities and threats brought by the CSAs.
m Threats eq. Higher Complexity or Time-Sensitive Decision Making
m  opportunities eg. Leveraging Big Dafa

e International collaboration:
o  Prof. Armand Baboli (National Institute of Applied Sciences of Lyon, France)

e Cooperation with other RAs:
o Jan Zeman - RO 4.2: Designing suitable heuristics for assembly plan optimization
o DuSan Knop - RO 12.4: Identifying of the problems from practice and designing new algorithms
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RO 11.2: Uncertainty and machine learning in discrete
optimization

i E - W robust
min max ™ o "
L [g (. p)] = 1o deter.
@ p follows an unknown probabilistic distribution P g a
@ but we assume that [P belongs to a set of distributions D (ambiguity set)
20 22

@ it turns out to be a generalization of both RO and SP frameworks

The problem can be equivalently expressed as

£1 norm (ours)
i £> norm Chang et al. (2019)
= £2 norm (ours)

DR-PTFT(£2) = min "4 + £ x|,

where 32 = VD2V ! and || - ||2 is £2 norm.

Robust Benefit (RB)

e Reformulation of distributionally robust
scheduling problem info its deterministic e

o 00z oos
variant + regularization term in the objective Robust Price (RP)
e Complexity characterization for
independent jobs in terms of the Ip norm:

some are po|ynomig|’ some Antonin Novak, Andrzej Gnatowski and Premysl
0 seudopolynom ial Sucha. Distributionally robust scheduling algorithmes for

L |- I——
0.06 0.08

foral flow minimization on parallel machines using

e Nearly identical trade-offs between the
Y norm regularizations. EJOR 2022.

stability of the solution and its cost
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RO 11.2: Uncertainty and machine learning in discrete
optimization

e What we will aim for:
o Study trade-offs between computational complexity and modelling efficiency in
distributionally robust optimization.
m In which cases does the increased complexity of uncertainty model franslate to
better protection from undesired realizations? Sweet spots for applications?
o Develop surrogate and automated data-driven models of discrepancy-based ambiguity
sefs.
m Exact solution of simplified model vs. heuristic solution with complex uncertainty
model.
o Role of ML for approximation of weakly NP-hard problems.
o Enhancing CP solvers with ML exploration strategies.
e International collaboration:
o Dr. Andrzej Gnatowski, Prof. Wojciech Bozejko, (Wroclaw University of Technology)
o Prof. Alessandro Agnetis (Universita di Siena, Italy)
e Cooperation with other RAs:
o D. Knop - RO 12.4: fixed-parameter tractability for stochastic optimization problems
o M. Janota - RO 12.3: learning from solutions & synthesis of uncertainty models
o D. Henrion - RO 3.2: efficient LMI representations and solution methods for data-driven
ambiguity sets
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RO 11.3: Effective decision-making for long-term

autonomy

e Planning and Acting for longer-term goals in dynamic
environments

o Safe planning and acting in dynamic environments [1]

o Generating eventually applicable plans in dynamic
environments [2]

o Balancing deliberative (planning) and reactive (e.qg. rule-
based acting) reasoning in dynamic or adversarial
environments [3]

[1] Lukdas Chrpa, Jakub Gemrot, Martin Pilat: Planning and Acting with
Non-Deterministic Events: Navigating between Safe Stares. AAAL 2020:
9802-9809

[2] Lukdas Chrpa, Martin Pilat, Jakub Med:. On Eventual Applicability of
Plans in Dynamic Environments with Cyclic Phenomena. KR 2021: 184-193

[3] Lukdas Chrpa, Martin Pilat, Jakub Gemrot: Planning and acting in
aynamic environments. iden f/’fK/hg and avoiding dangerous situations.
Journal of Experimental and Theoretical Artificial Intelligence 34(6). 925-
948 (2022)
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RO 11.3: Effective decision-making for long-term
autonomy

e What we aim for
o Formalize the concept of planning against nature [1]
o Investigate under what circumstances we can generate safe or robust
plans/policies
m Investigate the concept of action reversibility [2]
o Investigate how effectively deliberative (e.g. planning) and reactive (e.q.
MCTS) fechniques can be combined in dynamic environments
o Validate the methods in real/realistic scenarios (e.q. in roboftic systems)
e International Collaboration
o Mauro Vallati, University of Huddersfield
o Erez Karpas, Technion
o Wolfgang Faber and Martin Gebser, University of Klagenfurt
e Intended Cooperation within the Pro;ec’r
o RAG6 (L. Preucil, M. Kulich)
o RA7 (R. Babuska)

[1] Lukas Chrpa, Erez Karpas: On Verifying Linear Execution Strategies in Planning Against Nature, ICAPS
2024 (to appear)

[2] Jakub Med, Lukas Chrpa, Michael Morak, Wolfgang Faber: Weak and Strong Reversibility of Non-
Deterministic Actions: Universality and Un/form/fy ICAPS 2024 (to appear)
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RO 11.4: Metaheuristic methods application for large

scale, high dimensional data

1.1. Definition. We define the Lipschitz matrix analogously to the Lipschitz
constant. Given a domain D C R™, the scalar Lipschitz constant L € Ry defines a
set of scalar Lipschitz functions, denoted by L£(D, L), that satisfy

(1.1)  LDL)={f:D =R : |f(x1) - f(x2)] < L|x1 — Xo|o. X1.%5 € D}.

The Lipschitz matriz changes this definition, moving the constant L inside the norm
and promoting it to a matrix L € R”*”". This defines the matriz Lipschitz functions

’ 1/40 1/40
L=1,D=[1,1 L=[_0p=ru12 L= ] p=L1p

= =
== | N

(2023).

Lipschitz matrix: a
generalization of the scalar
Lipschitz constant for
functions with many inputs.
Among the Lipschitz matrices
compatible with a particular
function, we choose the
smallest such maftrix in the
Frobenius norm to encode
the structure of this function.

Application for Expensive
Optimization Problems.

Abhishek Kumar, Swagatam Das, Lingping Kong,
Vaclav Snasel: Se/f-Adaptive Spherical Search With a
Low-Precision Projection Maftrix for Real-World

Opftimization. IEEE Trans. Cybern. 53(7): 4107-4121

Abhishek Kumar, Swagatam Das, Vaclav Snasel:

di(x,y) = [[L(x —y)|l2, x,y € D.
submitted.

Efficient Three-Stage Surrogate-Assisted Differential
Evolution for Expensive Optimization Problems,
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RO 11.4: Metaheuristic methods application for large
scale, high dimensional data

e What we will aim for:
o with Examples of typical/interesting results (most likely achieved before Roboprox but relevant
to the Objective) to make it more illustrative
o develop new surrogate models (and develop the recent ones) for more effective and
faster solving real problems using new hyper-spherical models with automatically self-
adaptive control parameters of the optimization task,
m faking info account the complexity of the real application from the beginning,
m Be able fo test the algorithms in real-world application.
o Our work could be divided into three steps
m development of metaheuristic methods with an emphasis on adaptive model search,
m Vverification of the developed metaheuristic methods in real applications, e.g., energy-
efficient planning and reasoning,
m use of the developed methods in large-scale data as a basis for decision support
systems.
e International collaboration:
o Varun Ojha, New Castle University, UK
o Ponnuthurai Nagaratnam Suganthan, Nanyang Technological University, Singapore
o Millie Pant, Indian Institute of Technology
e Cooperation with other RAs:
o Prepared for cooperation with all RA and RG in all RO.
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RO 11.5: Optimization of energy consumption and
production

e Robofic cells - Production rate is the main KPI,
energy efficiency is disregarded

e Current situation:
o use maximal speed of movement
o does not guarantee the maximum
production rate
O negative impact on energy consumption

e Solution:
o optimized from the global point of view
o synergy with a digital twin
o Results (savings):
m Skoda: energy 20%
m  Blumenbecker: cycle time 4=9%, energy

109090/
=G &a\I 70

Continental: 26%
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RO 11.5: Optimization of energy consumption and
production

Optimization of energy production
(anscillary serwces?

Control of a virtual power plant (VPP)
o 6 Aeroderivative Gas Turbines
(Lockheed C-130 Hercules)
o the lg\sﬂquT battery system in CR
(20MWh)

Tasks: L.

o design robust optimization
algorithms to control the VPP
(uncertain demand) |

o design machine learning models
fo improve the control

Cooperation with O. Mamula
International: prof. B. Maenhout (U
Ghent)
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RA11: Industrial collaborations

e Porsche Engineering: automated cone slalom, lane-keeping assistant
demonstrator

e Blumenbecker Prag: Process Simulate extension for energy optimization of
industrial robots

e Continental: implementation of energy optimization of industrial robots

e Skoda Auto: EV routing algorithm, kick-activated opening of the trunk

e Eaton: code generation platform for safety controller, AC motor bearing
health prediction

e PPL: simulation and optimization of hub-depot parcel transport

e CEZ: analysis and improving mathemartical models for profit optimization

e ST Microelectronics: algorithm for analog integrated circuit placement
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